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ABSTRACT

Dickey and Fuller proposed some tests ©r the unit root hypothesis in an uni-varate time series,

Perron(1989) extended the t-ratio type unit-root tests so that they allow fora break in the deterministic trend and/ or in the
intercept term, Purpose of the paper is to study by simulations the effect of misspecified break point to the tests proposed
by Perron and to the likelihood ratio test. Further, the iimits of the fest statistics by Perron and the likelihood ratio test are
derived under the assumption of misspecified break point, and the accuracy of the Himitl formula is cxamined by simulation

techniques. (JEL Classification Number- 22)

L INTRODUCTION

The alternative regression for one of the unit root tests
which allow for 2 break in the deterministic trend as well as
in the iniercept term is

() Ay, =y + 3 (o +8 ODU, +yD, e

The dummy variables are defined as DUy =1 for
15ty -1 but 0 otherwise, 1J,=1 for t=T, whichis the
break point but ¢ otherwise, and DU, =1 for Ty+1s1<T
but 0 otherwise, These dummy variables are made to be
orthogonal to each other in this paper to simplify analyses.
The null hypothesis of the test is =P, =8,=0, and the
null regression is nested by the alternative regression. This
regression is different from the original regressions used by
Perron (1989) since equation (1) includes the D, term. The
reason and effect of this difference was studied by Morimune
and Nakagawa {1997), Other tests include either of the
trend or the constant shift but an extension of analyses to
these cases are stmight©rward and is omitted flom the
paper 1o save space.

In this paper, the effect of specifying incorrect break point is
studied. That means the correct break point is T, which is
unknown and different from Ty, by P where P is theinterval
between the comect and incomect break points. This
misspecification has a direct effect in the distribution of the
iest statistics through a parameter 8 which is defined as
{$.-8,)/ 0, ie, a standardized difierence in the trend
cocflicients. This parameter is estimable. Compared with
this parameter, the difference in the intercept (w;-a, )/o
is of smalier order of magnitude and inefBctive in the
asymptotic analysis. Inthe asymptotic theory of this paper,
various ratio between the misspecified interval P and T is
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analyzed but our main result comes fom trealing P oas
fixed.

2. EFFECT OF MISSPECIFIED BREAK POINT

The efect of misspecified break point is first studied by
simulations. After some iniensive work, atypical example
is presented by the table 1 where the sampile size is 100, the
standardized difference between the two trend cocefficients
(8)is -2, and the trend as well as the intercept terms have
breaks. The number of replications in simulations is 10600,
it may be obvious from the tables that the effect in the bias
of tests caused by musspecifying the break ratio is
asymnetric with respect to the position of the correct break
point compared with the misspecified break point. The
criticat vatues of the coefficient test and the t-test are closer
to 0 than the comect specificaiion cases when the break
point over-shoots the correct break point by 10%. This is
caused by the trend in the misspecified interval. It may be
noticed that. when the break ratio 1s over-shot, the critical
vatues of the coefficient and t-tests become almost zero then
the real sizes are almost zero. When the break point is
under-shot, the absolute values of critical values of the
coefficient test become smaller but they become greater in
the t-test. This causes clear difference in the real sizes of the
two tests. The size distortion of the t-test is extremely large
in this case. In the likelihood ratio test, the emor in the
critical values are positive in both under and over-shooting
cases, The size distortions are large in both cases, but
extreme when the break point is under-shot, In general,
enors in the critical points and size distortions are
extremely large which can be caused by the large § value.



2.1 The coetficient test

The bias in the break-mlio is dragging the estimated
coefficient toward zero in the both over and under-shooting
cases. The trend in the misspecified interval is dominating
the estimated coefficient. The over-shooting cases have
greater trend values in the misspecified interval than the
under-shooting cases. This causes greater bias in the
over-shooting casg than in the under-shooting case since
the denominator has squared trend but the numerator hasa
linear fanction of trend in the Hrmula of the least squares
estimator. Real sizes are almost zeto in both cases then the
bias is almost 3%,

2.2 The t-fest

The bias in the critical valtue caused by over-shooting or by
under-shooting takes opposite sign around the correct
critical values. This naturally causes opposite sign of the
bias in the size distortion. Compared with the coefficient
test, the denominator of the t-test is the * square root” of the
squared trend. Then the efect of the misspecified trend is
smaller than the coefficient test. However, real size of the
fest is almost zero when the break-ratio is over-shol. and
enormously targe when it is under-shot. The distrbution
is shifted toward the origin in the over-shooting cases, and
toward the minus direction in the under-shooting cases.

2.3 The Blelihood ratio test

The likelihood ratio is the sum of three squared ratios as is
proven by the equation {13) among which the t-matio is
included. Since the critical values are greater than the
correct values both in the over and undershooling cases,
two other mtios than the t-ratio are taking greater values
than they supposed to be when the break point is wrongly
specified. If these two other tenms are not effected by the
wrongly specified break point. properties of the critical
vahues of the likelihood ratio test must be similar to those
of the t-ratios, i.c.. the critical values must be smailer than
the comect values in the over-shooting cases. Similardy,
they musl be greater than those of the correct values inthe
under-shooting cases.

The t-ratic effect is not negligible since the size
distortion is bigger in cases where the break point is
under-shot than in cascs where it is over-shot. Since critical
values of the over-shooting cases are closer 1o the cormrect
critical values than these of the under-shooting cases, it is
safer to over-shoot the break point than under-shooting the
break point.
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Tahle 2: The slope difference is one sigma of the emor
varance in the simulations summarized by this table
which is one halfof the parameter used by simulations in
Tahle 1. The size distorions are smaller than those in
Table 1, but the tests are still useless. The real value of 3
as well as the misspecified interval are never known in
empirical studies, but this table show that these nuisance
parameter are very effective to the test results.

Zivot and Andrews type test avoids specifving the break
point prior to the test. However the break point must be
determined by the first round test, and there is no guaranies
that the chosen break point is correct. Hthe chosen break
point is in eror, their test also suffers from the same size
distortions. As for the liketihood ratio test, critical values
of the over-shooting cases are closer to the correct critical
values than those of the under-shooting cases. Then it is
safer to over-shoot the break point than under-shooting the
break point,

Table 3: If the regression specified by the altemative
hypothesis includes a break in trend but the DGP has only
the intercept break, the tests are not biased at ail even when
the intercept break point is misspecified. The choice of the
break point is not important. Ifthe test is only about the
intercept break, the Dickey and Fuller' s unit oot test © , 18
applicable and will not be biased. This is proven by
showing the fxct that the deterministic trend in the
alternative regression equation dominates the test statistic
and the effect of the intercept break becomes negligible
{Montanes 1997).

3. THE ASYMPTOTIC DISTRIBUTION
3.1 The t-ratio fest

Firstly, the asymptotic formula is derived for the t-ratio of
the lagged level variable. This t-ratio is well known tobe
the unit root test statistics proposed by Perron as a general
extension of the T, test statistics by Dickey and Fuller

The regression equation under the alternative hypothesis is
transformed as

() Ay, =0y, + Topled +B (- IDU, 47 Do+,

where 1, and 1, are the mean of trend in the first and second

sub-periods, and

3) 3’:—1 = E;g.;i?f&q -¥ - iéi(l_'fi)]DUir "'\A.’Dv



where y, and ¥, are the mean of trend in the first and
The vanable (3) is defined, for
¥, on (1-1;) then y,_, is

second sub-periods,
example, by regressing y,_,—
orthogonal to other regressors in the eguation (2). The
coeflicients in the equation (2) are adjusted 1o this
transbrmation of variable. Under the null hypothesis, the
DGP is Ay, =B/DU} +f:DUL+y"' Dl 4+, where the
asterisked dummy variables have breaks at T, instead of
Tg. It 1s assumed that T.<Ty inthe Hllowing analysis.
Then the DGP of the level variable is

@)y =m+ Zpn (e + BODU;

=7+ z;=;,2 (af +pi DU,
=[{es + B/ (o] + BIOIDIE,

neglecting D term which does not affect the asymptotic
results, v, isthesumof e, uptot, o] and o) arethe
initial values, and DIFY is I for To+l=t=Ty-1 since
To<Ty . The null regression is derived as

(5) Ay, = /DU, +BiDUy ~ (B -B7 DIF, +¢,

similarly neglecting D/ term. Using the DGP, the
deviation of y, from the mean is calculated as

6)  (y.-F)DU; =[{n,-m)+Bi (1~ )DU

oy R P
+(B1-BHDUL [IDIF, = (T, )]
1 £

for i=1.2. Then the regression coefficients of the trend in {3

darc
D = 2o (=)D (50 - F)
B TR TN
. 1o
=pi + o By O )
where  B'=> ;(r—‘é}Bi(r)dr using the standardized

Brownian motion. The misspecified interval does not affect
the regression cocficient up to the second temn. The
transformed regressor is

w120 7=

.}. “ : {(Tlm —ﬁx} (1"
® qria=Z DU -

¥
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1 + + +
+(B] - BDIEY,

where A; is the break fraction T, /T. Using this and
neglecting the higher order terms,

.
© 2(%}

=522=1 &zrg{%ﬁi i”"‘“"‘)170 B} DU

L
2By ZlDiFf

=3l B s P’ ls 20 [} By(ey dr}
where B,(r) is the demeaned and detrended Brownian
motion and 6=(i3§rﬁ;)/o which is the pammeter of
discrepancy in the misspecified trend finction. The
mumerator of the t-ratio is

1 . 1 . v e
{10} ?[?21:1,]‘ y{-lAYt = —T_lelj‘yl—l{gt - (ﬁl - ﬁZ )DIE*}

Alam) - i) tDIE?
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and ¢, is the standardized white noise. The t-ratio is

NS 2
any 1, = F 1‘3'2
0@2},1‘3/:-1

Diaz [ BB O 1T, fel +0)
&ﬂ.z )\‘Szf(::él (f)zdr + 7\3?62

E Tc.

If the break point is correctly specified, then the second
term in both numerator and denominator disappear. The
resulting formula is the same as that by Perron. Since T
is assumed to be less than T, in this analysis, the nuisance
parameter 8 is multiplied by the break fraction ., and the
miss-specified interval P oin the denominator. In the
mimerator, a sum of white noises for the same interval is
added besides a similar nuisance parameter.



3.2 The likelihood ratic fost

in addition {o the t-maio test statistic, asymptotic
expression of the likelihood ratio is also derived, It is noted
that the Hikelihood ratio is simply the F-ratio multiplied by
& acalar, Using the formuia of thetest by Dickey and Fuller
{1981}, the test is defined as

1
(12) We = 777 (RSS; - RSS )

b e iiler + ws sws dmr aelusaa
mq_({g‘&ff [RALA L Aa) Aa —SolAy X5} 1[\{} By

where RSS, and RSS, are the sum of squared residuals
under the null and the aliernative hypothesis, respectively,
Glis RSS, divided by T and is aconsistent estimator of
the crror variance, Ay, X, and X, arcaT by I column
vector, T by 3 matrix and T by 3 matiix consisting of
Ay, .{D,. DU, DU}, and{D,, DU, ,DU,,(t-1, DU,

(1=-1, DU, yii}, espectively. Since all regressors are
orthogonal to cach other, the W. test siatistic is

decomposed into

1,0 3 O Ay (t-1) DU:’:}E,
(13) We=7{{c) +§! @S [~1) DU P

Using (53, the second term of (13) converges to
a4 [“Jl_?:f(:—i }dB(r)-:—ESx@—“E”(l—;P'} ~
2 JLO

wiien the brek point is over-shol. When d is fixed, the
F-ratio statistic weakly converges to {(1)% +x (23 /3.

3.3 Alternative convergence rate of P

In the proof, # is easily checked that the t-ratio diverges if
the misspecificd interval F increases together with the
sample size T. This kind of analysis is found in Vogelsang
and Perron (1994). In their study, the break fraction is kept
constant which implics that the misspecified interval P isa
fixed fiaction of the sample size T. A simulation study is
nocessary 1o find out which assumption is reasonable to
chamcterize the small sample distdbution of the t-mtio
statistics of the unit et when a break is allowed in the
deterministic trend function.

Hthe misspecified intervalis afraction of the sample size T,
the {-ratio diverges asymptoticaliy. This is verified by
similar calculations as was shown in Section 3.1. The
summarized a3 Bllows, I

asymptotic  tesult s
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P=0(T"), O<i<l, the t-ratio normalized by /P CONVEIgES

to -b|:
- . 1.
(15) phmT,,;-fi;rc=~]51

If P=0O(T). then the same ratio converges to H
multiplied by a fiaction of polynomials in {(P/T). This
fraction converges to one if (P/T) converges to 0. Then
(15) is covered by this result. Vogelsang and Perron (1994)
proved that T /+f T is convergent when P is afixed fraction
of T. As can be seen from (14), the two other terms inthe
likelihood ratio are affected by the nuisance parameters and
converge to a constant if P is increasing with T at any rate.
if the test includes only the infercept break, then the T, test
can be applied without being affected by the choice of the
break point. This is proven by assuming that the two irend
coefficients are the same in the above analysis. For example,
the difference in the two trend coefficients is nullified in the
equation (6). Similarly in (8), (9), and (10}, and 3 is zero
in (11). The limit of the standard Dickey-Fuller T, testis
derived using our calcalations but without using the two
sub-sample periods. Even if the intercept term has abreak
in the DGP, the T, statistic has the same limit since the
difference in the intercept in the equation {6) does not affect
(7}, (8), (9), and (10).

The likelihood ratio test has the same convergence rale as
the t-ratio. If P=O(+/T ), then (14) is non—central % but is
dominated by 1. it is divergent if P >O(«/T ) but is
dominated by . if P <OQ(T); both of the t-ratio and this
term is O(T) if P=0(T).

4. PROPERTIES OF THE TEST STATISITCS

Properties of the test statistics are characterized by the
asvmplotic distributions, in particular, if the asymptotic
distribution simulates the smatl sample distribution
accurately. Since there arc two asymptotic results, it is
necessary to examine the accuracy of the approximations to
find which asymptotic result is more adequate than the
other 1o characterize the test statistics,

Firstly, the accuracy of the asymptotic distribution derived
by assuming P to be increasing with the samplesize T. In
this case, T /P converges to a constant, say ¢, in the
limit, The constant multiplied by +/P should be compared
with the criticat values of the test. If co/P s less than the
critical value, then the null hypothesis is rgjecled, and so
on. It scemis to us that this limit does not characlerize the
behavior of the test statistic at all since the ©. test values
are not really large when the break points are misspecified
by 10 %. As can be Huad from the Table 1, the crtical



values do not diverge away to infinity which is suggested
by this asympiotic theory,

Secondly, the accuracy of the asympiotic distribution
derived in Section 3 is examined. As it can be found from
the figures in the Appendix 2, this second asymptotic
results are more reliable {0 understand the smali sample
properties of the test statistics. At least, the asymptotic
distributions do not diverge away to infinity even when the
sample size is 1000, Our simulation resulis are not
satisfactory yet since the ratio of the misspecified inlerval to
the sample size is kept to 10% in all experiments. (The
misspecified interval , not the atio, had to be fxed in
experiments. ) T is expected that the asvmptotic
distributions will be Dund accurale if the misspecified
interval is fixed 1o, Br example, 10 in simulations. Then
the small sample distribution and the asymptotic
distributions may be very close.

APPENDIX 1: CRITICAL VALUES AND
SIZE DISTORTION

0.0 0.1 0.2 .3 04 0.5 (.6 0.7 0.8 0.9

CHANGES IN 8% CRITICAL VALUES

Coef-test

correct spec

-2008 -24.4 2271 -28.9 230,171 -30.0 -20.5 288 -27.2 .23.8

10% over-shoot

-24.4 -16.9 -1G.0 6.9 -5.0 -4.1 -3.3 29 24 .23

10% under-shoot

-23.8 -16.0 -18.2 189 -19.4 -19.4 -19.3 -18.8 -180 -17.8

T-test

carrect spee

-3.5 38 41 43 43 43 43 42 40 38

10% over-shoot

-38 3.3 22 153 -1t W09 D8 0.7 0.6 -0.6

10% under-shoot

38 6.3 63 -62 -6.1 -59 -56 -51 -44 -35

LR-tes1

correct spec

6.7 57 63 o8& 70 70 68 6.7 6.3 5.7

10% over-shoot

57 131 12,4 11.2 1:.0 1D.8 1G5 10,4 10.1 14.1

0% under-shoot

57295 20.1 20.3 20,3 201 19.3 18.5 16.8 1372

SIZE DISTORTION (REAL SIZE - 5%)

Coef-test

1G% over-shoot

0.6 -49 -58 506 -5.0 -50 50 -5.0 -5.0 -50

10% undes-shoot

9.0 47 -49 50 -50 50 .50 -50 -4.0 -48

T-test

10% over-shoot

0.0 -44 -50 -50 -50 -50 -50 50 .50 -50

10%under-shoot

6.0 82,5 756 708 63.2 537 385 192 1.0 .4.1

ER-test

10% over-shoot

0.0 58.3 36.8 24.6 19.8 19.0 18.0 20.2 245 294

10%under-shoot

0.0 904 §7.1 87.0 87.2 87.2 %6.5 85.1 78.4 58.4
R=10th 1-1 N=100

16% over-shoot: The critical values and the real size of the
test are calculated when the test break-ratio (BR) is 10%
greater than that of the DGP. (This is called over-shooting)
For example, the model BR is9.5 when the correct BR is
0.4, Real critical values are tabulated. Similarly, reai sizes
minus 5 are tabulated. The mode! BR is O when the correct
BRis 0.9

14% under-shost; The critical vatues and the real size of
the test arc calculated when the test break-ratio (BR) is 10%
smaller than that of the DGP. (This is called undesr-
shooting) For example, the model BR is 0.4 when the
correct BR is 0.5, Real critical are tabudated, Similarly,
real sizes minus 5 are tabulated. The model BR is 0.9
when the correct BR i5 0.

Table 2.4 1s -1. and the breaks are both in the trend and intercept
DGP BR

0.0 0.1 0.2 03 04 05 06 07 08 0.9
SIZE DISTORTION (REAL SIZE - 5%)

Coef-iest

10U over-shoot

0.0 -28 38 4.1 44 44 44 44 4.4 .45
10% under-shoot

00 32 38 37 .:37 431 37 37 35 ~28
T-test

10% over-shoot

00 -24 39 42 45 45 46 4.5 .45 .45
10% under-shoot

0.0 24.8 18.0 13.3 10.3 7.4 4.3 1.7 0.8 -2.3
LR-test

1G% over-shool

.06 9.8 1.2 -1.6 -30 -3.0 -3.3 -35 .27 -1.%
10% under-shoot

0.0 43.8 348 31.4 289 26.8 250 24.3 17.5 090

R=10th 1-1

Table 3-8 3s -2 and the break is only in the intercept term,

DGP BR

90 €61 02 03 04 05 06 07 08 09
SIZE DISTORTION (REAE SIZE - 5%)

Coef-test

1% over-shoot

6. 01 02 01 00 02 D2 04 0.4 04
10% under-shoot

00.-01 00 062 00 43 65 .05 00 -4

T-est
10% over-shoot
06 0.4 04 -G.1 0.0 01 -02 02 -03 -03
10% under-shoot
0.0 -0.2 0.2 060 -04 -0.2 -03 -0.1 -03 .0.2

LR-test

10% over-shoot

0.0 -04 0.3 -04
10% under-shoot

G0 -0.1 .1 01 01 -0.1 -0.1 -0.3 -0.2 -0.3

4.0 04 03 0.2 06 04

B=10th 0-1 N=100



APPENDIX 2: FIGURES 1-4
Solid Line: Simulated Distribution, Dotted Line: Asymplotic
Distribution
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